资源类型

期刊论文 900

年份

2024 3

2023 70

2022 99

2021 61

2020 59

2019 44

2018 56

2017 45

2016 41

2015 47

2014 34

2013 31

2012 31

2011 33

2010 32

2009 37

2008 36

2007 37

2006 22

2005 13

展开 ︾

关键词

多目标优化 9

COVID-19 4

动力学 4

5G 2

三相界面 2

低成本 2

可靠性灵敏度 2

并联机构 2

机器学习 2

渗透汽化 2

相变 2

稳健设计 2

系统动力学 2

聚偏氟乙烯 2

航天器 2

2

-10#柴油微乳剂 1

12相整流 1

2 Mb/s高速信令 1

展开 ︾

检索范围:

排序: 展示方式:

纳米多孔介质中的流体流动

Weiyao Zhu,Bin Pan,Zhen Chen,Wengang Bu,Qipeng Ma,Kai Liu,Ming Yue

《工程(英文)》 2024年 第32卷 第1期   页码 139-152 doi: 10.1016/j.eng.2023.05.014

摘要:

Fluid flow at nanoscale is closely related to many areas in nature and technology, e.g., unconventional hydrocarbon recovery, carbon dioxide geo-storage, underground hydrocarbon storage, fuel cells, ocean desalination and biomedicine. At nanoscale, interfacial forces dominate over bulk forces, and nonlinear effects are important, which significantly deviate from conventional theory. During the past decades, a series of experiments, theory and simulations have been performed to investigate fluid flow at nanoscale, which has advanced our fundamental knowledge of this topic. However, a critical review is still lacking, which has seriously limited the basic understanding of this area. Therefore herein, we systematically review experimental, theoretical and simulation works on single- and multi- phases fluid flow at nanoscale. We also clearly point out the current research gaps and future outlook. These insights will promote the significant development of nonlinear flow physics at nanoscale and will provide crucial guidance on the relevant areas.

关键词: Transport in nanoporous media     Multi-phase fluid dynamics     Nonlinear flow mechanisms     Nonlinear flow conservation equations     Interfacial forces     Molecular dynamics simulation    

Trajectory optimization with constraints for alpine skiers based on multi-phase nonlinear optimal control

Cong-ying Cai, Xiao-lan Yao,yaoxiaolan@bit.edu.cn

《信息与电子工程前沿(英文)》 2020年 第21卷 第10期   页码 1413-1534 doi: 10.1631/FITEE.1900586

摘要: The super giant slalom (Super-G) is a speed event in alpine skiing, in which the skier trajectory has a significant influence on the athletes’ performances. It is a challenging task to determine an for the skiers along the entire course because of the complexity and difficulty in the convergence of the optimization model. In this study, a model for alpine skiers competing in the Super-G is established based on the theory, in which the objective is to minimize the runtime between the starting point and the finish line. The original problem is converted into a multi-phase nonlinear problem solved with a , and the trajectory parameters are optimized to discover the time-. Using carried out by the MATLAB optimization toolbox, the is obtained under several equality and inequality constraints. Simulation results reveal the effectiveness and rationality of the model. A test is carried out to show that our code works properly. In addition, several practical proposals are provided to help alpine skiers improve their training and skiing performance.

AMMONIA DISPERSION FROM MULTI-FLOOR VERSUS STANDARD SINGLE-FLOOR PIG PRODUCTION FACILITIES BASED ON COMPUTATIONALFLUID DYNAMICS SIMULATIONS

《农业科学与工程前沿(英文)》 2023年 第10卷 第3期   页码 374-389 doi: 10.15302/J-FASE-2023501

摘要:

● NH3 dispersion from a multi-floor pig building was compared to a single-floor building.

关键词: pig building     computational fluid dynamics     ammonia     dispersion    

Application of a weakly compressible smoothed particle hydrodynamics multi-phase model to non-cohesive

Rasoul MEMARZADEH, Gholamabbas BARANI, Mahnaz GHAEINI-HESSAROEYEH

《结构与土木工程前沿(英文)》 2018年 第12卷 第3期   页码 412-424 doi: 10.1007/s11709-017-0432-8

摘要:

The subject of present study is the application of mesh free Lagrangian two-dimensional non-cohesive sediment transport model applied to a two-phase flow over an initially trapezoidal-shaped sediment embankment. The governing equations of the present model are the Navier-Stocks equations solved using Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) method. To simulate the movement of sediment particles, the model considers a powerful two-part technique; when the sediment phase has rigid behavior, only the force term due to shear stress in the Navier-Stokes equations is used for simulation of sediment particles’ movement. Otherwise, all the Navier-Stokes force terms are used for transport simulation of sediment particles. In the present model, the interactions between different phases are calculated automatically, even with considerable difference between the density and viscosity of phases. Validation of the model is performed using simulation of available laboratory experiments, and the comparison between computational results and experimental data shows that the model generally predicts well the flow propagation over movable beds, the induced sediment transport and bed changes, and temporal evolution of embankment breaching.

关键词: WCSPH method     non-cohesive sediment transport     rheological model     two-part technique     two-phase dam break    

Stormwater treatment: examples of computational fluid dynamics modeling

Gaoxiang YING, John SANSALONE, Srikanth PATHAPATI, Giuseppina GAROFALO, Marco MAGLIONICO, Andrea BOLOGNESI, Alessandro ARTINA

《环境科学与工程前沿(英文)》 2012年 第6卷 第5期   页码 638-648 doi: 10.1007/s11783-012-0442-7

摘要: Control of rainfall-runoff particulate matter (PM) and PM-bound chemical loads is challenging; in part due to the wide gradation of PM complex geometries of many unit operations and variable flow rates. Such challenges and the expense associated with resolving such challenges have led to the relatively common examination of a spectrum of unit operations and processes. This study applies the principles of computational fluid dynamics (CFD) to predict the particle and pollutant clarification behavior of these systems subject to dilute multiphase flows, typical of rainfall-runoff, within computationally reasonable limits, to a scientifically acceptable degree of accuracy. The Navier-Stokes (NS) system of nonlinear partial differential equations for multi-phase hydrodynamics and separation of entrained particles are solved numerically over the unit operation control volume with the boundary and initial conditions defined and then solved numerically until the desired convergence criteria are met. Flow rates examined are scaled based on sizing of common unit operations such as hydrodynamic separators (HS), wet basins, or filters, and are examined from 1 to 100 percent of the system maximum hydraulic operating flow rate. A standard turbulence model is used to resolve flow, and a discrete phase model (DPM) is utilized to examine the particle clarification response. CFD results closely follow physical model results across the entire range of flow rates. Post-processing the CFD predictions provides an in-depth insight into the mechanistic behavior of unit operations by means of three dimensional (3-D) hydraulic profiles and particle trajectories. Results demonstrate the role of scour in the rapid degradation of unit operations that are not maintained. Comparisons are provided between measured and CFD modeled results and a mass balance error is identified. CFD is arguably the most powerful tool available for our profession since continuous simulation modeling.

关键词: stormwater     unit operations and processes (UOPs)     hydrodynamic separation     filtration     adsorption     computational fluid dynamics (CFD)     turbulence modeling     discrete phase model     particle separation     detention/retention basins     clarification    

Computational fluid dynamics simulation of aerosol transport and deposition

Yingjie TANG, Bing GUO

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 362-377 doi: 10.1007/s11783-011-0365-8

摘要: In this article computational fluid dynamics (CFD) simulation of aerosol transport and deposition, i.e. the transport and deposition of particles in an aerosol, is reviewed. The review gives a brief account of the basics of aerosol mechanics, followed by a description of the general CFD approach for flow field simulation, turbulence modeling, wall treatments and simulation of particle motion and deposition. Then examples from the literature are presented, including CFD simulation of particle deposition in human respiratory tract and particle deposition in aerosol devices. CFD simulation of particle transport and deposition may provide information that is difficult to obtain through physical experiments, and it may help reduce the number of experiments needed for device design. Due to the difficulty of describing turbulent flow and particle-eddy interaction, turbulent dispersion of particles remains one of the greatest challenges for CFD simulation. However, it is possible to take a balanced approach toward quantitative description of aerosol dispersion using CFD simulation in conjunction with empirical relations.

关键词: computational fluid dynamics (CFD)     aerosol     transport     deposition    

Fundamental influences of particles on stirred and unstirred venting processes of foaming systems

Henrik LEIMEISTER,Jörg STEINBACH

《化学科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 141-148 doi: 10.1007/s11705-014-1423-0

摘要: Venting is the common safety measure to protect plant equipment against excessive overpressure. So far, scenarios in which particles were part of the system and should have been accounted for did ignore their presence; the scenarios were treated like a two-phase system. Current research shows that particles can have a major influence on the venting behaviour. Experimental results indicate that particles affect level swell and relief flow especially of foamy systems. Based on those results four different layers of influence of the particle have been identified and are presented in a first model. Based on this model recommendations for the development of new and more complex models are given.

关键词: venting     multi-phase    

Maximum entropy based finite element analysis of porous media

Emad NOROUZI, Hesam MOSLEMZADEH, Soheil MOHAMMADI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 364-379 doi: 10.1007/s11709-018-0470-x

摘要: The maximum entropy theory has been used in a wide variety of physical, mathematical and engineering applications in the past few years. However, its application in numerical methods, especially in developing new shape functions, has attracted much interest in recent years. These shape functions possess the potential for performing better than the conventional basis functions in problems with randomly generated coarse meshes. In this paper, the maximum entropy theory is adopted to spatially discretize the deformation variable of the governing coupled equations of porous media. This is in line with the well-known fact that higher-order shape functions can provide more stable solutions in porous problems. Some of the benchmark problems in deformable porous media are solved with the developed approach and the results are compared with available references.

关键词: maximum entropy FEM     fully coupled multi-phase system     porous media    

Coupled solid-fluid FE-analysis of an embankment dam

Michael PERTL, Matthias HOFMANN, Guenter HOFSTETTER

《结构与土木工程前沿(英文)》 2011年 第5卷 第1期   页码 53-62 doi: 10.1007/s11709-010-0084-4

摘要: A coupled solid-fluid FE-model for partially saturated soils, characterized by modeling the soil as a three-phase material consisting of a deformable soil skeleton and the fluid phases water and air, is reviewed briefly. As a constitutive model for the soil skeleton, the well-known Barcelona Basic model (BBM) is employed, which is formulated in terms of net stress and matric suction. For the BBM, a computationally efficient return mapping algorithm is proposed, which only requires the solution of a scalar nonlinear equation at the integration point level. The coupled FE-model is applied to the coupled transient numerical simulation of the water flow and the deformations and stresses in an embankment dam.

关键词: multi-phase model     unsaturated soil model     Barcelona Basic model (BBM)     return mapping algorithm     embankment dam    

Introduction to the special section on the Symposium on Computational Fluid Dynamics and Molecular Simulation

Tianwei TAN, Peiyong QIN,

《化学科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 241-241 doi: 10.1007/s11705-009-0285-3

Numerical simulation of fluid dynamics in the stirred tank by the SSG Reynolds Stress Model

Nana QI, Hui WANG, Kai ZHANG, Hu ZHANG

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 506-514 doi: 10.1007/s11705-010-0508-7

摘要: The Speziale, Sarkar and Gatski Reynolds Stress Model (SSG RSM) is utilized to simulate the fluid dynamics in a full baffled stirred tank with a Rushton turbine impeller. Four levels of grid resolutions are chosen to determine an optimised number of grids for further simulations. CFD model data in terms of the flow field, trailing vortex, and the power number are compared with published experimental results. The comparison shows that the global fluid dynamics throughout the stirred tank and the local characteristics of trailing vortices near the blade tips can be captured by the SSG RSM. The predicted mean velocity components in axial, radial and tangential direction are also in good agreement with experiment data. The power number predicted is quite close to the designed value, which demonstrates that this model can accurately calculate the power number in the stirred tank. Therefore, the simulation by using a combination of SSG RSM and MRF impeller rotational model can accurately model turbulent fluid flow in the stirred tank, and it offers an alternative method for design and optimisation of stirred tanks.

关键词: stirred tank     fluid dynamics     numerical simulation     SSG Reynolds Stress Model     MRF    

Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon

Yujie DING,Jing LIU

《能源前沿(英文)》 2016年 第10卷 第1期   页码 29-36 doi: 10.1007/s11708-015-0388-0

摘要: A composite liquid metal marble made of metal droplet coated with water film was proposed and its impact dynamics phenomenon was disclosed. After encapsulating the liquid metal into water droplets, the fabricated liquid marble successfully avoided being oxygenized by the metal fluid and thus significantly improved its many physical capabilities such as surface tension modification and shape control. The striking behaviors of the composite liquid metal marbles on a substrate at room temperature were experimentally investigated in a high speed imaging way. It was disclosed that such marbles could disintegrate, merge, and even rebound when impacting the substrate, unlike the existing dynamic fluidic behaviors of liquid marble or metal droplet. The mechanisms lying behind these features were preliminarily interpreted. This fundamental finding raised profound multiphase fluid mechanics for understanding the complex liquid composite which was also critical for a variety of practical applications such as liquid metal jet cooling, inkjet printed electronics, 3D printing or metal particle fabrication etc.

关键词: liquid metal marble     metallic droplet     composite fluid     impact dynamics     multiphase fluid mechanics    

Computational fluid dynamics applied to high temperature hydrogen separation membranes

Guozhao JI, Guoxiong WANG, Kamel HOOMAN, Suresh BHATIA, Jo?o C. DINIZ da COSTA

《化学科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 3-12 doi: 10.1007/s11705-011-1161-5

摘要: This work reviews the development of computational fluid dynamics (CFD) modeling for hydrogen separation, with a focus on high temperature membranes to address industrial requirements in terms of membrane systems as contactors, or in membrane reactor arrangements. CFD modeling of membranes attracts interesting challenges as the membrane provides a discontinuity of flow, and therefore cannot be solved by the Navier-Stokes equations. To address this problem, the concept of source has been introduced to understand gas flows on both sides or domains (feed and permeate) of the membrane. This is an important solution, as the gas flow and concentrations in the permeate domain are intrinsically affected by the gas flow and concentrations in the feed domain and vice-versa. In turn, the source term will depend on the membrane used, as different membrane materials comply with different transport mechanisms, in addition to varying gas selectivity and fluxes. This work also addresses concentration polarization, a common effect in membrane systems, though its significance is dependent upon the performance of the membrane coupled with the operating conditions. Finally, CFD modeling is shifting from simplified single gas simulation to industrial gas mixtures, when the mathematical treatment becomes more complex.

关键词: membrane     gas separation     computational fluid dynamics     concentration polarization     hydrogen    

Dynamics analysis of bladder-urethra system based on CFD

Qinghua JIN, Xiaojun ZHANG, Xiaoyang LI, Jianliu WANG,

《机械工程前沿(英文)》 2010年 第5卷 第3期   页码 336-340 doi: 10.1007/s11465-010-0027-8

摘要: A mathematical model for a bladder-urethra system can provide basic analysis for the disabled urethra closure of stress urinary incontinence (SUI) patients in a clinic. Based on computational fluid dynamics (CFD), we developed a three-dimensional urodynamic bladder-urethra system, which includes bladder, bladder neck, prostate, and urethra. The realistic recirculation process of the urinary bladder during the physiologic voiding process in conjunction with a flow simulation through the female urinary bladder and urethra is presented. The computational results show that a dead-water zone and the zone of secondary flow occur, independent of the shape of the prostatic urethra. For the pathological prostata, the extreme constriction of the prostatic urethra results in an additional wide-stretched dead-water zone. The simulation results does not only improve urinary incontinence surgery for clinicians, but can also provide a basis for theoretical analysis.

关键词: bladder-urethra system     stress urinary incontinence (SUI)     computational fluid dynamics (CFD)     urodynamics    

Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression

Bin HU, Di WU, L.W. WANG, R.Z. WANG

《能源前沿(英文)》 2017年 第11卷 第4期   页码 493-502 doi: 10.1007/s11708-017-0510-6

摘要: In this paper, the simulation approach and exergy analysis of multi-stage compression high temperature heat pump (HTHP) systems with R1234ze(Z) working fluid are conducted. Both the single-stage and multi-stage compression cycles are analyzed to compare the system performance with 120°C pressurized hot water supply based upon waste heat recovery. The exergy destruction ratios of each component for different stage compression systems are compared. The results show that the exergy loss ratios of the compressor are bigger than that of the evaporator and the condenser for the single-stage compression system. The multi-stage compression system has better energy and exergy efficiencies with the increase of compression stage number. Compared with the single-stage compression system, the coefficient of performance (COP) improvements of the two-stage and three-stage compression system are 9.1% and 14.6%, respectively. When the waste heat source temperature is 60°C, the exergy efficiencies increase about 6.9% and 11.8% for the two-stage and three-stage compression system respectively.

关键词: multi-stage compression     high temperature heat pump     heat recovery     exergy destruction     R1234ze(Z) working fluid    

标题 作者 时间 类型 操作

纳米多孔介质中的流体流动

Weiyao Zhu,Bin Pan,Zhen Chen,Wengang Bu,Qipeng Ma,Kai Liu,Ming Yue

期刊论文

Trajectory optimization with constraints for alpine skiers based on multi-phase nonlinear optimal control

Cong-ying Cai, Xiao-lan Yao,yaoxiaolan@bit.edu.cn

期刊论文

AMMONIA DISPERSION FROM MULTI-FLOOR VERSUS STANDARD SINGLE-FLOOR PIG PRODUCTION FACILITIES BASED ON COMPUTATIONALFLUID DYNAMICS SIMULATIONS

期刊论文

Application of a weakly compressible smoothed particle hydrodynamics multi-phase model to non-cohesive

Rasoul MEMARZADEH, Gholamabbas BARANI, Mahnaz GHAEINI-HESSAROEYEH

期刊论文

Stormwater treatment: examples of computational fluid dynamics modeling

Gaoxiang YING, John SANSALONE, Srikanth PATHAPATI, Giuseppina GAROFALO, Marco MAGLIONICO, Andrea BOLOGNESI, Alessandro ARTINA

期刊论文

Computational fluid dynamics simulation of aerosol transport and deposition

Yingjie TANG, Bing GUO

期刊论文

Fundamental influences of particles on stirred and unstirred venting processes of foaming systems

Henrik LEIMEISTER,Jörg STEINBACH

期刊论文

Maximum entropy based finite element analysis of porous media

Emad NOROUZI, Hesam MOSLEMZADEH, Soheil MOHAMMADI

期刊论文

Coupled solid-fluid FE-analysis of an embankment dam

Michael PERTL, Matthias HOFMANN, Guenter HOFSTETTER

期刊论文

Introduction to the special section on the Symposium on Computational Fluid Dynamics and Molecular Simulation

Tianwei TAN, Peiyong QIN,

期刊论文

Numerical simulation of fluid dynamics in the stirred tank by the SSG Reynolds Stress Model

Nana QI, Hui WANG, Kai ZHANG, Hu ZHANG

期刊论文

Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon

Yujie DING,Jing LIU

期刊论文

Computational fluid dynamics applied to high temperature hydrogen separation membranes

Guozhao JI, Guoxiong WANG, Kamel HOOMAN, Suresh BHATIA, Jo?o C. DINIZ da COSTA

期刊论文

Dynamics analysis of bladder-urethra system based on CFD

Qinghua JIN, Xiaojun ZHANG, Xiaoyang LI, Jianliu WANG,

期刊论文

Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression

Bin HU, Di WU, L.W. WANG, R.Z. WANG

期刊论文